An Introduction to Stop Analysis

Mark McGinnis - Code 542
FEMCI
October 7, 1999

An Introduction to Stop Analysis

- What is STOP?
- Creation of a thermal NASTRAN model
- Application of thermal model temperatures
- Predicting optics motions & deformed shapes
- Results processing options

What Is STOP?

- Structural-Thermal-OPtical
 - Predicts optical performance of a system degraded by thermal deformations
- Three distinct Analyses: thermal, structural, & optical
 - Thermal analyst selects a few cases
 - Coldest or Hottest may not be worst optically, GRADIENTS!
 - Process is slow so the number of cases is limited
 - NASTRAN used to predict motion and deformation of optical components
 - Optical analyst applies these changes to the optical model or develops a sensitivity matrix for the system

Creation of a Thermal NASTRAN Model

- Created from a validated NASTRAN model
 - The Unit Temperature Change check is very important
 - Watch offsets, RBE's (effectively isolators)
- Use NASTRAN Thermal Analyzer (NTA) to Generate Temps for All GRIDs
 - Change Executive Deck for NTA
 - APP HEAT, SOL 1
 - GRIDS now only have one DOF (temperature)
 - Change all material cards to MATT4 or MATT5
 - Both contain only conductivity information
 - MATT5 makes the conductivity temperature-dependent

Creation of a Thermal NASTRAN Model (Continued)

- Remove all SPC cards
- Replace all MPCs, including RBEx elements
 - RBE2 cards replaced with CELAS2 elements
 - The spring constant becomes the conductivity
 - Appropriate value may not be readily known
 - Only relative value is important
 - Use seed temperatures near both sides to minimize importance
 - RBE3 cards are removed
 - Use thermal model temperature for important lumped masses
 - Add CELAS2 from other geometry for less important ones
 - MPCs acting as a boundary condition are removed

Application of Thermal Model Temperatures

- Create initial thermal-NASTRAN grid map
 - Usually performed by visual estimation
 - Thermal nodes may be discarded or used many times
 - "Seed" around the perimeter of isothermal plates, at ends of bars
 - Typically ignore gradients through plates (use average)
 - Assign thermal model temperatures with SPC & TEMP cards
 - DOF is 1 for SPC
 - "Displacement" value is the temperature from thermal model
 - Apply to DOF 1 for GRIDS 1-NGRID
 - TEMP cards assigned to same GRIDs
 - Add a TEMPD card
 - lowest thermal model temperature
 - Provides starting points for temperature interpolation

Application of Thermal Model Temperatures (Continued)

- SPC and TEMP cards must be called in the Executive
- Execute the NTA run for each thermal case
 - Request TEMP(PUNCH)=ALL
 - Output is a TEMP card for each NASTRAN GRID
 - Visualize these temperatures in P3, FEMAP, etc.
 - Thermal engineers should look at the results
 - Be able to explain hot and cold spots
 - Make sure all heaters are "working"
- Correct errors, add more seeds, and repeat NTA runs
 - Make same mapping changes to all runs
 - Add seeds in inappropriate cold or hot spots

Predicting Deformed Shapes

- Finished with NTA when all cases "look right"
- Update the original structural model
 - Add NTA output TEMP cards
 - Lock all 6 DOF on bolted interfaces
 - Create TEMPPx for through-plate gradients
 - Crucial for mirrors where you want to study deformations
 - Must be done by hand
- Run SOL 1 with NTA temperatures as the applied load
 - Look for unexpected stresses
 - Recover motions and deformations of all optics
 - Add thin plate over solids to recover rotations
 - Many will be point masses, encourage thermal model to include them

Results Processing Options

- Determine correct optical parameters to optimize
- Two ways to compute performance
 - Sensitivity matrix
 - Provided to structural analyst by optical analyst
 - For each optic change all 6 DOF, curvature, refraction index
 - Report effect on parameter of interest in spreadsheet
 - Mechanical analyst applies observed motions to this spreadsheet and calculates final value of parameter
 - Assume linearity, best for pointing error estimation
 - Ray-tracing
 - Optical Analyst modifies prescription to disturbed shape
 - Change curvature, index of refraction
 - Can study surface figure error via Zernike polynomials

Summary

- Successful STOP requires commitment from all three disciplines
- NASTRAN model does not have to be incredibly detailed but must be validated
- Automation of steps via scripts, macros increases the number of cases studied
- STOP can improve structural and thermal designs if done early enough